3.1899 \(\int (d+e x) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2} \, dx\)

Optimal. Leaf size=210 \[ -\frac{\left (c d^2-a e^2\right )^3 \tanh ^{-1}\left (\frac{a e^2+c d^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{16 c^{5/2} d^{5/2} e^{3/2}}+\frac{\left (c d^2-a e^2\right ) \left (a e^2+c d^2+2 c d e x\right ) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{8 c^2 d^2 e}+\frac{\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 c d} \]

[Out]

((c*d^2 - a*e^2)*(c*d^2 + a*e^2 + 2*c*d*e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*
d*e*x^2])/(8*c^2*d^2*e) + (a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(3*c*d)
- ((c*d^2 - a*e^2)^3*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt
[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(16*c^(5/2)*d^(5/2)*e^(3/2))

_______________________________________________________________________________________

Rubi [A]  time = 0.276123, antiderivative size = 210, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.114 \[ -\frac{\left (c d^2-a e^2\right )^3 \tanh ^{-1}\left (\frac{a e^2+c d^2+2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{16 c^{5/2} d^{5/2} e^{3/2}}+\frac{\left (c d^2-a e^2\right ) \left (a e^2+c d^2+2 c d e x\right ) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{8 c^2 d^2 e}+\frac{\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 c d} \]

Antiderivative was successfully verified.

[In]  Int[(d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2],x]

[Out]

((c*d^2 - a*e^2)*(c*d^2 + a*e^2 + 2*c*d*e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*
d*e*x^2])/(8*c^2*d^2*e) + (a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(3*c*d)
- ((c*d^2 - a*e^2)^3*ArcTanh[(c*d^2 + a*e^2 + 2*c*d*e*x)/(2*Sqrt[c]*Sqrt[d]*Sqrt
[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(16*c^(5/2)*d^(5/2)*e^(3/2))

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 33.5861, size = 194, normalized size = 0.92 \[ \left (- \frac{a e}{8 c^{2} d^{2}} + \frac{1}{8 c e}\right ) \left (a e^{2} + c d^{2} + 2 c d e x\right ) \sqrt{a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )} + \frac{\left (a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )\right )^{\frac{3}{2}}}{3 c d} + \frac{\left (a e^{2} - c d^{2}\right )^{3} \operatorname{atanh}{\left (\frac{a e^{2} + c d^{2} + 2 c d e x}{2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{a d e + c d e x^{2} + x \left (a e^{2} + c d^{2}\right )}} \right )}}{16 c^{\frac{5}{2}} d^{\frac{5}{2}} e^{\frac{3}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate((e*x+d)*(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

(-a*e/(8*c**2*d**2) + 1/(8*c*e))*(a*e**2 + c*d**2 + 2*c*d*e*x)*sqrt(a*d*e + c*d*
e*x**2 + x*(a*e**2 + c*d**2)) + (a*d*e + c*d*e*x**2 + x*(a*e**2 + c*d**2))**(3/2
)/(3*c*d) + (a*e**2 - c*d**2)**3*atanh((a*e**2 + c*d**2 + 2*c*d*e*x)/(2*sqrt(c)*
sqrt(d)*sqrt(e)*sqrt(a*d*e + c*d*e*x**2 + x*(a*e**2 + c*d**2))))/(16*c**(5/2)*d*
*(5/2)*e**(3/2))

_______________________________________________________________________________________

Mathematica [A]  time = 0.327172, size = 181, normalized size = 0.86 \[ \frac{1}{48} \sqrt{(d+e x) (a e+c d x)} \left (-\frac{6 a^2 e^3}{c^2 d^2}-\frac{3 \left (c d^2-a e^2\right )^3 \log \left (2 \sqrt{c} \sqrt{d} \sqrt{e} \sqrt{d+e x} \sqrt{a e+c d x}+a e^2+c d (d+2 e x)\right )}{c^{5/2} d^{5/2} e^{3/2} \sqrt{d+e x} \sqrt{a e+c d x}}+\frac{4 a e^2 x}{c d}+\frac{16 a e}{c}+\frac{6 d^2}{e}+28 d x+16 e x^2\right ) \]

Antiderivative was successfully verified.

[In]  Integrate[(d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2],x]

[Out]

(Sqrt[(a*e + c*d*x)*(d + e*x)]*((6*d^2)/e + (16*a*e)/c - (6*a^2*e^3)/(c^2*d^2) +
 28*d*x + (4*a*e^2*x)/(c*d) + 16*e*x^2 - (3*(c*d^2 - a*e^2)^3*Log[a*e^2 + 2*Sqrt
[c]*Sqrt[d]*Sqrt[e]*Sqrt[a*e + c*d*x]*Sqrt[d + e*x] + c*d*(d + 2*e*x)])/(c^(5/2)
*d^(5/2)*e^(3/2)*Sqrt[a*e + c*d*x]*Sqrt[d + e*x])))/48

_______________________________________________________________________________________

Maple [B]  time = 0.013, size = 465, normalized size = 2.2 \[{\frac{dx}{4}\sqrt{aed+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}}}+{\frac{{d}^{2}}{8\,e}\sqrt{aed+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}}}-{\frac{3\,{a}^{2}{e}^{3}}{16\,c}\ln \left ({1 \left ({\frac{a{e}^{2}}{2}}+{\frac{c{d}^{2}}{2}}+cdex \right ){\frac{1}{\sqrt{dec}}}}+\sqrt{aed+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}} \right ){\frac{1}{\sqrt{dec}}}}+{\frac{3\,e{d}^{2}a}{16}\ln \left ({1 \left ({\frac{a{e}^{2}}{2}}+{\frac{c{d}^{2}}{2}}+cdex \right ){\frac{1}{\sqrt{dec}}}}+\sqrt{aed+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}} \right ){\frac{1}{\sqrt{dec}}}}-{\frac{c{d}^{4}}{16\,e}\ln \left ({1 \left ({\frac{a{e}^{2}}{2}}+{\frac{c{d}^{2}}{2}}+cdex \right ){\frac{1}{\sqrt{dec}}}}+\sqrt{aed+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}} \right ){\frac{1}{\sqrt{dec}}}}+{\frac{1}{3\,cd} \left ( aed+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2} \right ) ^{{\frac{3}{2}}}}-{\frac{a{e}^{2}x}{4\,cd}\sqrt{aed+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}}}-{\frac{{a}^{2}{e}^{3}}{8\,{c}^{2}{d}^{2}}\sqrt{aed+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}}}+{\frac{{a}^{3}{e}^{5}}{16\,{c}^{2}{d}^{2}}\ln \left ({1 \left ({\frac{a{e}^{2}}{2}}+{\frac{c{d}^{2}}{2}}+cdex \right ){\frac{1}{\sqrt{dec}}}}+\sqrt{aed+ \left ( a{e}^{2}+c{d}^{2} \right ) x+cde{x}^{2}} \right ){\frac{1}{\sqrt{dec}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int((e*x+d)*(a*e*d+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x)

[Out]

1/4*d*(a*e*d+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*x+1/8*d^2/e*(a*e*d+(a*e^2+c*d^2)*x
+c*d*e*x^2)^(1/2)-3/16*e^3/c*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*e
*d+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*c)^(1/2)*a^2+3/16*d^2*e*ln((1/2*a*e^2+
1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*e*d+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*c
)^(1/2)*a-1/16*d^4/e*c*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*e*d+(a*
e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*c)^(1/2)+1/3*(a*e*d+(a*e^2+c*d^2)*x+c*d*e*x^
2)^(3/2)/c/d-1/4/d*e^2/c*(a*e*d+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*x*a-1/8/d^2*e^3
/c^2*(a*e*d+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*a^2+1/16/d^2*e^5/c^2*ln((1/2*a*e^2+
1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2)+(a*e*d+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*c
)^(1/2)*a^3

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \text{Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(e*x + d),x, algorithm="maxima")

[Out]

Exception raised: ValueError

_______________________________________________________________________________________

Fricas [A]  time = 0.235646, size = 1, normalized size = 0. \[ \left [\frac{4 \,{\left (8 \, c^{2} d^{2} e^{2} x^{2} + 3 \, c^{2} d^{4} + 8 \, a c d^{2} e^{2} - 3 \, a^{2} e^{4} + 2 \,{\left (7 \, c^{2} d^{3} e + a c d e^{3}\right )} x\right )} \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} \sqrt{c d e} - 3 \,{\left (c^{3} d^{6} - 3 \, a c^{2} d^{4} e^{2} + 3 \, a^{2} c d^{2} e^{4} - a^{3} e^{6}\right )} \log \left (4 \,{\left (2 \, c^{2} d^{2} e^{2} x + c^{2} d^{3} e + a c d e^{3}\right )} \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} +{\left (8 \, c^{2} d^{2} e^{2} x^{2} + c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4} + 8 \,{\left (c^{2} d^{3} e + a c d e^{3}\right )} x\right )} \sqrt{c d e}\right )}{96 \, \sqrt{c d e} c^{2} d^{2} e}, \frac{2 \,{\left (8 \, c^{2} d^{2} e^{2} x^{2} + 3 \, c^{2} d^{4} + 8 \, a c d^{2} e^{2} - 3 \, a^{2} e^{4} + 2 \,{\left (7 \, c^{2} d^{3} e + a c d e^{3}\right )} x\right )} \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} \sqrt{-c d e} - 3 \,{\left (c^{3} d^{6} - 3 \, a c^{2} d^{4} e^{2} + 3 \, a^{2} c d^{2} e^{4} - a^{3} e^{6}\right )} \arctan \left (\frac{{\left (2 \, c d e x + c d^{2} + a e^{2}\right )} \sqrt{-c d e}}{2 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} c d e}\right )}{48 \, \sqrt{-c d e} c^{2} d^{2} e}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(e*x + d),x, algorithm="fricas")

[Out]

[1/96*(4*(8*c^2*d^2*e^2*x^2 + 3*c^2*d^4 + 8*a*c*d^2*e^2 - 3*a^2*e^4 + 2*(7*c^2*d
^3*e + a*c*d*e^3)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(c*d*e) - 3
*(c^3*d^6 - 3*a*c^2*d^4*e^2 + 3*a^2*c*d^2*e^4 - a^3*e^6)*log(4*(2*c^2*d^2*e^2*x
+ c^2*d^3*e + a*c*d*e^3)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x) + (8*c^2*d^
2*e^2*x^2 + c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4 + 8*(c^2*d^3*e + a*c*d*e^3)*x)*sqr
t(c*d*e)))/(sqrt(c*d*e)*c^2*d^2*e), 1/48*(2*(8*c^2*d^2*e^2*x^2 + 3*c^2*d^4 + 8*a
*c*d^2*e^2 - 3*a^2*e^4 + 2*(7*c^2*d^3*e + a*c*d*e^3)*x)*sqrt(c*d*e*x^2 + a*d*e +
 (c*d^2 + a*e^2)*x)*sqrt(-c*d*e) - 3*(c^3*d^6 - 3*a*c^2*d^4*e^2 + 3*a^2*c*d^2*e^
4 - a^3*e^6)*arctan(1/2*(2*c*d*e*x + c*d^2 + a*e^2)*sqrt(-c*d*e)/(sqrt(c*d*e*x^2
 + a*d*e + (c*d^2 + a*e^2)*x)*c*d*e)))/(sqrt(-c*d*e)*c^2*d^2*e)]

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \sqrt{\left (d + e x\right ) \left (a e + c d x\right )} \left (d + e x\right )\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate((e*x+d)*(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

Integral(sqrt((d + e*x)*(a*e + c*d*x))*(d + e*x), x)

_______________________________________________________________________________________

GIAC/XCAS [A]  time = 0.252241, size = 304, normalized size = 1.45 \[ \frac{1}{24} \, \sqrt{c d x^{2} e + c d^{2} x + a x e^{2} + a d e}{\left (2 \,{\left (4 \, x e + \frac{{\left (7 \, c^{2} d^{3} e^{2} + a c d e^{4}\right )} e^{\left (-2\right )}}{c^{2} d^{2}}\right )} x + \frac{{\left (3 \, c^{2} d^{4} e + 8 \, a c d^{2} e^{3} - 3 \, a^{2} e^{5}\right )} e^{\left (-2\right )}}{c^{2} d^{2}}\right )} + \frac{{\left (c^{3} d^{6} - 3 \, a c^{2} d^{4} e^{2} + 3 \, a^{2} c d^{2} e^{4} - a^{3} e^{6}\right )} \sqrt{c d} e^{\left (-\frac{3}{2}\right )}{\rm ln}\left ({\left | -\sqrt{c d} c d^{2} e^{\frac{1}{2}} - 2 \,{\left (\sqrt{c d} x e^{\frac{1}{2}} - \sqrt{c d x^{2} e + c d^{2} x + a x e^{2} + a d e}\right )} c d e - \sqrt{c d} a e^{\frac{5}{2}} \right |}\right )}{16 \, c^{3} d^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(e*x + d),x, algorithm="giac")

[Out]

1/24*sqrt(c*d*x^2*e + c*d^2*x + a*x*e^2 + a*d*e)*(2*(4*x*e + (7*c^2*d^3*e^2 + a*
c*d*e^4)*e^(-2)/(c^2*d^2))*x + (3*c^2*d^4*e + 8*a*c*d^2*e^3 - 3*a^2*e^5)*e^(-2)/
(c^2*d^2)) + 1/16*(c^3*d^6 - 3*a*c^2*d^4*e^2 + 3*a^2*c*d^2*e^4 - a^3*e^6)*sqrt(c
*d)*e^(-3/2)*ln(abs(-sqrt(c*d)*c*d^2*e^(1/2) - 2*(sqrt(c*d)*x*e^(1/2) - sqrt(c*d
*x^2*e + c*d^2*x + a*x*e^2 + a*d*e))*c*d*e - sqrt(c*d)*a*e^(5/2)))/(c^3*d^3)